Mi lista de blogs

martes, 27 de mayo de 2014

TRIGONOMETRÍA

1. HISTORIA DE LA TRIGONOMETRÍA
2. DEFINICIÓN:
  • SEN a
  • COS a
  • TG a
3. 3 PROBLEMAS RESUELTOS DE TRIGONOMETRÍA DISTINTOS
4. BIOGRAFÍA DE PTOLOMEO

1.


El origen de la palabra TRIGONOMETRÍA proviene del griego "trígonos" (triángulo) y "metros" (metria).Los babilonios y los egipcios (hace más de 3000 años) fueron los primeros en utilizar los ángulos de un triángulo y las razones trigonométricas para efectuar medidas en agricultura y para construir pirámides. Posteriormente se desarrolló más con el estudio de la astronomía mediante la predicción de las rutas y posiciones de los cuerpos celestes y para mejorar la exactitud en la navegación y en el cálculo del tiempo y los calendarios.

El estudio de la trigonometría pasó después a Grecia, donde destaca el matemático y astrónomo Griego Hiparco de Nicea. Más tarde se difundió por India y Arabia donde era utilizada en la Astronomía. Desde Arabia se extendió por Europa, donde finalmente se separa de la Astronomía para convertirse en una rama independiente de las Matemáticas.


A finales del siglo VIII los astrónomos Árabes trabajaron con la función seno y a finales del siglo X ya habían completado la función seno y las otras cinco funciones. También descubrieron y demostraron teoremas fundamentales de la trigonometría.

A principios del siglo XVII, el matemático John Napier inventó los logaritmos y gracias a esto los cálculos trigonométricos recibieron un gran empuje.

A mediados del siglo XVII Newton encontró la serie para el sen x y series similares para el cos x y la tg x. Con la invención del cálculo las funciones trigonométricas fueron incorporadas al análisis, donde todavía hoy desempeñan un importante papel tanto en las matemáticas puras como en las aplicadas.

Por último, en el siglo XVIII, el matemático Leonhard Euler demostró que las propiedades de la trigonometría eran producto de la aritmética de los números complejos y además definió las funciones trigonométricas utilizando expresiones con exponenciales de números complejos.




2.

Triángulo con lados Opuesto, Adyacente e Hipotenusa

  • El seno (abreviado como sen, o sin por llamarse "sĭnus" en latín) es la razón entre el cateto opuesto sobre la hipotenusa.

   \sin \, \alpha =
   \frac{\overline{CB}}{\overline{AB}} =
   \frac{a}{c}
  • El coseno (abreviado como cos) es la razón entre el cateto adyacente sobre la hipotenusa,

   \cos\alpha =
   \frac{\overline{AC}}{\overline{AB}} =
   \frac{b}{c}
  • La tangente (abreviado como tan o tg) es la razón entre el cateto opuesto sobre el cateto adyacente,

   \tan\alpha =
   \frac{\overline{CB}}{\overline{AC}} =
   \frac{a}{b}
3.

1-


 Como ves, los tres lados del triángulo son conocidos, así que para calcular las razones trigonométricas sólo tenemos que aplicar las fórmulas y sustituir. Para el ángulo α el cateo opuesto es 9, el contiguo 12 y la hipotenusa 15.
                                 


2-
torre, el ángulo con el que está observando la cúspide es de 60º y sostiene el artilugio a una altura de 1,5 m:

 Para comenzar, vamos a hacer un dibujo que aclare un poco la situación poniendo los datos que conocemos.
Si nos fijamos en el triángulo, el lado c mide 7 m y una vez que tengamos calculado el lado b, para calcular la altura de la torre sólo tendremos que sumarle los 1,5 m. Así pues, vamos a calcular el lado b.
Para el ángulo 60º, el lado que conozco es el cateto contiguo y el que quiero calcular es el cateto opuesto, así pues planteo la tangente de 60º.
Por tanto la altura de la torre es 12,11 m + 1,5 m = 13, 61 m.



3-
 Sabiendo que cos 42º = 0,74. Calcula:sen 222º,  tg 138º,  cos 48º,  sen 318º y    sen 132º:
 
sen 222º
El ángulo 222º pertenece al tercer cuadrante. Vamos a ver con que ángulo del primero se relaciona: α = 222º - 180º = 42º.
Por tanto y teniendo en cuenta que el seno en el tercer cuadrante es negativo, sen222º = - sen 42º = - 0,669 

tg 138º
138º está en el segundo cuadrante y se relaciona del primero con α = 180º - 138º = 42º, que vuelve a ser el ángulo que conocemos.
Como la tangente es negativa en el segundo cuadrante, tg 138º= - tg 42º= -0,9

cos 48º
48º es del primer cuadrante, pero cumple que es el complementario del ángulo que conozco 42º.
Entonces cos 48º = sen 42º = 0,669.

sen 318º
318º está en el cuarto cuadrante y se relaciona con 360º - 318º = 42.
Entonces sen 318 º= - sen 42º = - 0,669

sen132º
132º es del segundo y se relaciona con 180º - 132º = 48º que es el complementario de 42º.
Entonces y como el seno es positivo en el segundo cuadrante, sen 132º = sen 48º = cos 42º = 0,74.


4.



(O Ptolomeo; Siglo II) Astrónomo, matemático y geógrafo griego. Es muy poca la información sobre la vida de Tolomeo que ha llegado hasta nuestro tiempo. No se sabe con exactitud dónde nació, aunque se supone que fue en Egipto, ni tampoco dónde falleció.


Su actividad se enmarca entre las fechas de su primera observación, cuya realización asignó al undécimo año del reinado de Adriano (127 d.C.), y de la última, fechada en el 141 d.C. En su catálogo de estrellas, adoptó el primer año del reinado de Antonino Pío (138 a.C.) como fecha de referencia para las coordenadas. 

Tolomeo fue el último gran representante de la astronomía griega y, según la tradición, desarrolló su actividad de observador en el templo de Serapis en Canopus, cerca de Alejandría. Su obra principal y más famosa, que influyó en la astronomía árabe y europea hasta el Renacimiento, es la Sintaxis matemática, en trece volúmenes, que en griego fue calificada de grande o extensa (megalé) para distinguirla de otra colección de textos astronómicos debidos a diversos autores. 


La admiración inspirada por la obra de Tolomeo introdujo la costumbre de referirse a ella utilizando el término griego megisté (la grandísima, la máxima); el califa al-Mamun la hizo traducir al árabe en el año 827, y del nombre de al-Magisti que tomó dicha traducción procede el título de Almagesto adoptado generalmente en el Occidente medieval a partir de la primera traducción de la versión árabe, realizada en Toledo en 1175. 

Utilizando los datos recogidos por sus predecesores, especialmente por Hiparco, Tolomeo construyó un sistema del mundo que representaba con un grado de precisión satisfactoria los movimientos aparentes del Sol, la Luna y los cinco planetas entonces conocidos, mediante recursos geométricos y calculísticos de considerable complejidad; se trata de un sistema geocéntrico según el cual la Tierra se encuentra inmóvil en el centro del universo, mientras que en torno a ella giran, en orden creciente de distancia, la Luna, Mercurio, Venus, el Sol, Marte, Júpiter y Saturno.

El universo geocéntrico de Tolomeo
 
Con todo, la Tierra ocupa una posición ligeramente excéntrica respecto del centro de las circunferencias sobre las que se mueven los demás cuerpos celestes, llamadas círculos deferentes. Además, únicamente el Sol recorre su deferente con movimiento uniforme, mientras que la Luna y los planetas se mueven sobre otro círculo, llamado epiciclo, cuyo centro gira sobre el deferente y permite explicar las irregularidades observadas en el movimiento de dichos cuerpos. 

El sistema de Tolomeo proporcionó una interpretación cinemática de los movimientos planetarios que encajó bien con los principios de la cosmología aristotélica, y se mantuvo como único modelo del mundo hasta el Renacimiento, aun cuando la mayor precisión alcanzada en las observaciones astronómicas a finales del período medieval hizo necesaria la introducción de decenas de nuevos epiciclos, con lo cual resultó un sistema excesivamente complicado y farragoso.













 



lunes, 12 de mayo de 2014

PELÍCULA AGORA

1. RESUMEN
2. AÑO DE PRODUCCIÓN, DIRECTOR, PROTAGONISTAS
3. DESCUBRIMIENTOS FÍSICOS DE LOS QUE HABLA LA PELÍCULA

1.
Siglo IV. Egipto bajo el Imperio Romano. Las violentas revueltas religiosas en las calles de Alejandría alcanzan a su legendaria Biblioteca. Atrapada tras sus muros, la brillante astrónoma Hipatia lucha por salvar la sabiduría del Mundo Antiguo con la ayuda de sus discípulos. Entre ellos, los dos hombres que se disputan su corazón: Orestes y el joven esclavo Davo, que se debate entre el amor que le profesa en secreto y la libertad que podría alcanzar uniéndose al imparable ascenso de los cristianos. 

2.
Título: Ágora
Título original: Ágora
Dirección: Alejandro Amenábar
País: Estados Unidos, España
Año: 2009
Fecha de estreno: 09/10/2009
Duración: 126 min
Género: Drama, Romance, Histórico, Aventuras
Calificación: No recomendada para menores de 13 años

PROTAGONISTAS:

-Hypatia (Rachel Weisz) es el personaje central de Ágora. Una mujer que vive por y para la filosofía. Obsesionada con mirar al cielo para descubrir sus secretos es incapaz de involucrarse en lo que ocurre en la Tierra. 

-Orestes (Oscar Isaac), un joven vanidoso que abrazará la fe cristiana para salvarse. Él está enamorado de Hypatia y lo pregona a voz en grito. 

-Davus (Max Minghella), un esclavo. A él no se le permite expresarse en público sin pedir permiso. Es un ciudadano de segunda, de tercera, incluso. Busca en la religión un refugio. Un lugar en el que
sentirse persona con plena libertad.
3.
Los dos descubrimientos de Hipatia en la película son el movimiento de rotación y el de traslación de la Tierra.
Sobre la rotación de la Tierra, hay que decir que Hipatia hace este descubrimiento sospechando durante toda la película de que la tierra se mueve, así que para poner a prueba este movimiento lo comprueba a través de ¨La ley de la inercia¨ . La escena en el que lo descubre es en la de barco, en la que tira una bolsa con peso y cae en el mismo lugar.
El segundo descubrimiento es el de traslación, tiene lugar en la escena de la arena, en la que descubre que la tierra no gira en círculos si no formando una elipse.
   

TIPOS DE REACCIONES QUÍMICAS

  • REACCIÓN DE SÍNTESIS: Elementos o compuestos sencillos que se unen para formar un compuesto más complejo.
                                                     A+B → AB

Donde A y B representan cualquier sustancia química.
Un ejemplo de este tipo de reacción es la síntesis del cloruro de sodio:
                             
                       2Na(s) + Cl2(g) → 2NaCl(s)

  • REACCIÓN DE DESCOMPOSICIÓN: Un compuesto se fragmenta en elementos o compuestos más sencillos. En este tipo de reacción un solo reactivo se convierte en zonas o productos.
                                           
                                                AB → A+B

Donde A y B representan cualquier sustancia química.
Un ejemplo de este tipo de reacción es la descomposición del agua:
                         
                        2H2O(l) → 2H2(g) + O2(g)

  • REACCIÓN DE DESPLAZAMIENTO O DE SUSTITUCIÓN: Un elemento reemplaza a otro en un compuesto.

                                                 A + BC → AC + B

Donde A, B y C representan cualquier sustancia química.
Un ejemplo de este tipo de reacción se evidencia cuando el hierro(Fe) desplaza al cobre(Cu) en el sulfato de cobre (CuSO4):

                          Fe + CuSO4 → FeSO4 + Cu

  • REACCIÓN DE DOBLE DESPLAZAMIENTO O DOBLE SUSTITUCIÓN: Los iones en un compuesto cambian lugares con los iones de otro compuesto para formar dos sustancias diferentes.

                                                  AB + CD → AD + BC

Donde A, B, C y D representan cualquier sustancia química.
Veamos un ejemplo de este tipo de reacción:

                          NaOH + HCl → NaCl + H2O






                          

martes, 25 de marzo de 2014

RELACIONES ENTRE LOS SERES VIVOS : INTERESPECÍFICAS TEMA 7

  • COMPETENCIA:


Ejemplo: 
 Competencia entre machos de ciervo rojo durante la época del celo, ejemplo de competencia intraespecífica (competencia por interferencia).

  • MUTUALISMO:


Ejemplo: 
Mutualismo servicio-servicio. Pez payaso y anémona de mar.

  •  PARASITISMO:
 

Ejemplo:
 Interacción simbiótica de hormigas con áfidos parásitos sobre capullos de adelfa.

  • DEPREDACIÓN:
 

Ejemplo:
Un martín pescador (Alcedo atthis) con un pez en el pico.


  • COMENSALISMO:

x 

Ejemplo: 
La rémora vive pegada al tiburon, ejemplo claro de comensalismo.





















martes, 18 de marzo de 2014

RELACIONES ENTRE LOS SERES VIVOS : INTRAESPECÍFICAS TEMA 7

  • COLONIAL:
         15157__96_m_1.jpg
Ejemplo: 
Coral. Los individuos se originado por reproduccion asexual.
  • FAMILIAR:
 Ejemplo: 
Los pingüinos
 











  • GREGARIA:
Ejemplo: 
Gansos, patos,...


  • SOCIAL:
Ejemplo:
leones y tigres






miércoles, 19 de febrero de 2014

LOS PELAYOS

1. ¿ Es real o ficticia la película de los Pelayo?
2. ¿ Que método utilizan para desbancar al casino?
3.  Resumen y comentario personal


RESPUESTAS:


1. REAL O FICTICIA:


Lo primero que hay que decir es que la película tiene sello propio. Rodada en Mallorca y con guiños al cine norteamericano (especialmente en el inicio con un canción interpretada por Daniel Bruhl en un ambiente muy cool), The Pelayos es una película que arranca con un planteamiento original: un robo sin delito, un atraco sin atraco. Una historia real (allí estaban ayer en Málaga todos los Pelayos vestidos con la camiseta de la película), que parece ficticia.

La película está muy bien rodada, fotografiada e interpretada por un elenco muy completo y bien escogido. Además el diseño de producción tiene las dosis necesarias de glamour (diez veces más barato que el de la trilogía de Soderbegh y comandada por Clooney).



2. METODO:
 La imperfección de la ruleta y el método que plantea el padre


3. 
  • Resumen:
      
"The Pelayos" es la emocionante aventura de un grupo de jóvenes con pocas perspectivas de futuro a los que se les presenta la gran oportunidad: cambiar su suerte y disfrutar de una aventura que se convertirá en un modo de vida absolutamente a contracorriente, desbancar los casinos del mundo con un método infalible basado en la imperfección de la ruleta.

  • Comentario personal:

Me a parecido una película bastante buena por ser real no ficticia y también por los métodos que utilizan para poder ganar tanto dinero.







 

lunes, 27 de enero de 2014

BIOGRAFÍA DE NEWTON

Nació el 4 de enero de 1643 en Woolsthorpe, Lincolnshire, Inglaterra. En esa fecha el calendario usado era el juliano y correspondía al 25 de diciembre de 1642, día de la Navidad . El parto fue prematuro aparentemente y nació tan pequeño que nadie pensó que lograría vivir mucho tiempo. Su vida corrió peligro por lo menos durante una semana. Fue bautizado el 1 de enero de 1643, 12 de enero en el calendario gregoriano.
La casa donde nació y vivió su juventud se ubica en el lado oeste del valle del río Witham, más abajo de la meseta de Kesteven, en dirección a la ciudad de Grantham. Es de piedra caliza gris, el mismo material que se encuentra en la meseta. Tiene forma de una letra T gruesa en cuyo trazo más largo se encuentran la cocina y el vestíbulo, y la sala se encuentra en la unión de los dos trazos. Su entrada es descentrada y se ubica entre el vestíbulo y la sala, y se orienta hacia las escaleras que conducen a dos dormitorios del piso superior.
Sus padres fueron Isaac Newton y Hannah Ayscough, dos campesinos puritanos. No llegó a conocer a su padre, pues había muerto en octubre de 1642. Cuando su madre volvió a casarse con Barnabas Smith, que no tenía intención de cargar con un niño de tres años, lo dejó a cargo de su abuela, con quien vivió hasta la muerte de su padrastro en 1653. Este fue posiblemente un hecho traumático para Isaac; constituía la pérdida de la madre no habiendo conocido al padre. A su abuela nunca le dedicó un recuerdo cariñoso y hasta su muerte pasó desapercibida. Lo mismo ocurrió con el abuelo, que pareció no existir hasta que se descubrió que también estaba presente en la casa y correspondió al afecto de Newton de la misma forma: lo desheredó.
Escribió una lista de sus pecados e incluyó uno en particular: "Amenazar a mi padre y a mi madre Smith con quemarlos a ellos y a su casa". Lo hizo nueve años después del fallecimiento del padrastro, lo que comprueba que la escena quedó grabada en el recuerdo de Newton. Las acciones del padrastro, que se negó a llevarlo a vivir con él hasta que cumplió diez años, podrían motivar este odio.
Cuando Barnabas Smith falleció, su madre regresó al hogar familiar acompañada por dos hijos que tuvo con este señor, pero la unión familiar duró menos de dos años. Isaac fue enviado a estudiar al colegio The King's School, en Grantham, a la edad de doce años. Lo que se sabe de esta etapa es que estudió latín, algo de griego y lo básico de geometría y aritmética. Era el programa habitual de estudio de una escuela primaria en ese entonces. Su maestro fue Mr. Stokes, que tenía buen prestigio como educador.
En 1659 compró un cuaderno, libro de bolsillo llamado en ese entonces, en cuya primer página escribió en latín "Martij 19, 1659" (19 de marzo 1659). Representaba el período entre 1659 y 1660, que coincidía con el período de su regreso a su ciudad natal, y la mayor parte de sus escritos están dedicados a "Utilissimum prosodiae supplementum". Años después, en la colección Keynes del King's College se encuentra una edición de Pindaro con la firma de Newton y fechada en 1659. En la colección Babson aparece una copia de las metamorfosis de Ovidio fechadas ese mismo año.

 Sir Isaac Newton (1643-1727).jpg                               


LAS TRES LEYES DE NEWTON:


Primera ley de Newton o Ley de la inercia:

La primera ley del movimiento rebate la idea aristotélica de que un cuerpo sólo puede mantenerse en movimiento si se le aplica una fuerza. Newton expone que:
Todo cuerpo persevera en su estado de reposo o movimiento uniforme y rectilíneo a no ser que sea obligado a cambiar su estado por fuerzas impresas sobre él.
La formulación original en latín de Newton de esta ley fue:
Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus illud a viribus impressis cogitur statum suum mutare
Esta ley postúla, por tanto, que un cuerpo no puede cambiar por sí solo su estado inicial, ya sea en reposo o en movimiento rectilíneo uniforme, a menos que se aplique una fuerza o una serie de fuerzas cuyo resultante no sea nulo sobre él. Newton toma en cuenta, así, el que los cuerpos en movimiento están sometidos constantemente a fuerzas de roce o fricción, que los frena de forma progresiva, algo novedoso respecto de concepciones anteriores que entendían que el movimiento o la detención de un cuerpo se debía exclusivamente a si se ejercía sobre ellos una fuerza, pero nunca entendiendo como esta a la fricción.
En consecuencia, un cuerpo con movimiento rectilíneo uniforme implica que no existe ninguna fuerza externa neta o, dicho de otra forma; un objeto en movimiento no se detiene de forma natural si no se aplica una fuerza sobre él. En el caso de los cuerpos en reposo, se entiende que su velocidad es cero, por lo que si esta cambia es porque sobre ese cuerpo se ha ejercido una fuerza neta.
La primera ley de Newton sirve para definir un tipo especial de sistemas de referencia conocidos como Sistemas de referencia inerciales, que son aquellos sistemas de referencia desde los que se observa que un cuerpo sobre el que no actúa ninguna fuerza neta se mueve con velocidad constante.
En realidad, es imposible encontrar un sistema de referencia inercial, puesto que siempre hay algún tipo de fuerzas actuando sobre los cuerpos, pero siempre es posible encontrar un sistema de referencia en el que el problema que estemos estudiando se pueda tratar como si estuviésemos en un sistema inercial. En muchos casos, por ejemplo, suponer a un observador fijo en la Tierra es una buena aproximación de sistema inercial. Lo anterior porque a pesar que la Tierra cuenta con una aceleración traslacional y rotacional estas son del orden de 0.01 m/s^2 y en consecuencia podemos considerar que un sistema de referencia de un observador dentro de la superficie terrestre es un sistema de referencia inercial.

Segunda ley de Newton o Ley de fuerza:

La segunda ley del movimiento de Newton dice que:
El cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.
En las palabras originales de Newton:
Mutationem motus proportionalem esse vi motrici impressæ, & fieri secundum lineam rectam qua vis illa imprimitur.
Esta ley explica qué ocurre si sobre un cuerpo en movimiento (cuya masa no tiene por qué ser constante) actúa una fuerza neta: la fuerza modificará el estado de movimiento, cambiando la velocidad en módulo o dirección. En concreto, los cambios experimentados en el momento lineal de un cuerpo son proporcionales a la fuerza motriz y se desarrollan en la dirección de esta; las fuerzas son causas que producen aceleraciones en los cuerpos. Consecuentemente, hay relación entre la causa y el efecto, la fuerza y la aceleración están relacionadas. Dicho sintéticamente, la fuerza se define simplemente en función del momento en que se aplica a un objeto, con lo que dos fuerzas serán iguales si causan la misma tasa de cambio en el momento del objeto.
En términos matemáticos esta ley se expresa mediante la relación:

\mathbf{F}_{\text{net}} = {\mathrm{d}\mathbf{p} \over \mathrm{d}t}
Donde:
\mathbf{p} es el momento lineal
\mathbf{F}_{\text{net}} la fuerza total o fuerza resultante.
Suponiendo que la masa es constante y que la velocidad es muy inferior a la velocidad de la luz la ecuación anterior se puede reescribir de la siguiente manera:
Sabemos que \mathbf{p} es el momento lineal, que se puede escribir m.V donde m es la masa del cuerpo y V su velocidad.

\mathbf{F}_{\text{net}} = {\mathrm{d}(m\mathbf{v}) \over \mathrm{d}t}
Consideramos a la masa constante y podemos escribir   {\mathrm{d}\mathbf{v} \over \mathrm{d}t}=\mathbf{a} aplicando estas modificaciones a la ecuación anterior:

\mathbf{F} = m\mathbf{a}
La fuerza es el producto de la masa por la aceleración, que es la ecuación fundamental de la dinámica, donde la constante de proporcionalidad, distinta para cada cuerpo, es su masa de inercia. Veamos lo siguiente, si despejamos m de la ecuación anterior obtenemos que m es la relación que existe entre \mathbf{F} y \mathbf{a}. Es decir la relación que hay entre la fuerza aplicada al cuerpo y la aceleración obtenida. Cuando un cuerpo tiene una gran resistencia a cambiar su aceleración (una gran masa) se dice que tiene mucha inercia. Es por esta razón por la que la masa se define como una medida de la inercia del cuerpo.
Por tanto, si la fuerza resultante que actúa sobre una partícula no es cero, esta partícula tendrá una aceleración proporcional a la magnitud de la resultante y en dirección de ésta. La expresión anterior así establecida es válida tanto para la mecánica clásica como para la mecánica relativista, a pesar de que la definición de momento lineal es diferente en las dos teorías: mientras que la dinámica clásica afirma que la masa de un cuerpo es siempre la misma, con independencia de la velocidad con la que se mueve, la mecánica relativista establece que la masa de un cuerpo aumenta al crecer la velocidad con la que se mueve dicho cuerpo.
De la ecuación fundamental se deriva también la definición de la unidad de fuerza o newton (N). Si la masa y la aceleración valen 1, la fuerza también valdrá 1; así, pues, el newton es la fuerza que aplicada a una masa de un kilogramo le produce una aceleración de 1 m/s². Se entiende que la aceleración y la fuerza han de tener la misma dirección y sentido.
La importancia de esa ecuación estriba sobre todo en que resuelve el problema de la dinámica de determinar la clase de fuerza que se necesita para producir los diferentes tipos de movimiento: rectilíneo uniforme (m.r.u), circular uniforme (m.c.u) y uniformemente acelerado (m.r.u.a).
Si sobre el cuerpo actúan muchas fuerzas, habría que determinar primero el vector suma de todas esas fuerzas. Por último, si se tratase de un objeto que cayese hacia la tierra con una resistencia del aire igual a cero, la fuerza sería su peso, que provocaría una aceleración descendente igual a la de la gravedad.

Tercera ley de Newton o Ley de acción y reacción:

Con toda acción ocurre siempre una reacción igual y contraria: quiere decir que las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en sentido opuesto.7
La formulación original de Newton es:
Actioni contrariam semper & æqualem esse reactionem: sive corporum duorum actiones in se mutuo semper esse æquales & in partes contrarias dirigi.
La tercera ley de Newton es completamente original (pues las dos primeras ya habían sido propuestas de otras maneras por Galileo, Hooke y Huygens) y hace de las leyes de la mecánica un conjunto lógico y completo .Expone que por cada fuerza que actúa sobre un cuerpo (empuje), este realiza una fuerza de igual intensidad, pero de sentido contrario sobre el cuerpo que la produjo. Dicho de otra forma, las fuerzas, situadas sobre la misma recta, siempre se presentan en pares de igual magnitud y de dirección, pero con sentido opuesto.
Este principio presupone que la interacción entre dos partículas se propaga instantáneamente en el espacio (lo cual requeriría velocidad infinita), y en su formulación original no es válido para fuerzas electromagnéticas puesto que estas no se propagan por el espacio de modo instantáneo sino que lo hacen a velocidad finita "c".
Es importante observar que este principio de acción y reacción relaciona dos fuerzas que no están aplicadas al mismo cuerpo, produciendo en ellos aceleraciones diferentes, según sean sus masas. Por lo demás, cada una de esas fuerzas obedece por separado a la segunda ley. Junto con las anteriores leyes, ésta permite enunciar los principios de conservación del momento lineal y del momento angular.


SIMULADORES DE LAS LEYES:


http://ceres.tucansys.com/sco011/Index.htm?e=27&q=1&d=1   PRIMERA LEY DE NEWTON 
http://ceres.tucansys.com/sco012/Index.htm?e=27&q=1&d=1   SEGUNDA LEY DE NEWTON 
http://ceres.tucansys.com/sco013/Index.htm?e=27&q=1&d=1   TERCERA LEY DE NEWTON